Nazwisko	Data	Nr na liście
Imię		Wydział
		Dzień tyg.
		Godzina

Ćwiczenie 133

Interferencja fal akustycznych - dudnienia

Tabela I. Wyznaczanie częstotliwości dudnień

Pomiar	Czas,	[ms]	Różnica, [ms]	Liczba cykli	Często generato	tliwość ora, [Hz]
Nr	t_1	<i>t</i> ₂	$t_2 - t_1$	Ν	pierwszego, f_1	drugiego, f_2
1						
2						
3						

Tabela II. Teoretyczna częstotliwość dudnienia dla danego pomiaru

Pomiar	Wyznaczona częstotliwość dudnienia, [Hz]	Teoretyczna częstotliwość dudnienia, [Hz]	Procentowa różnica, [%]	
Nr	$f_d = \frac{N}{t_2 - t_1}$	$f_t = \left f_1 - f_2 \right $	$\frac{\left f_t - f_d\right }{f_t} \cdot 100\%$	
1				
2				
3				

Ćwiczenie 133. Interferencja fal akustycznych – dudnienia

P	OTRZEBNE WYPOSAŻENIE		
•	Interfejs "Science Workshop 500"	•	Generator dwukanałowy
•	Czujnik napięcia	•	Głośnik

CEL

Ćwiczenie polega na zbadaniu częstotliwości dudnienia w zależności od doboru częstotliwości dwu fal akustycznych nakładających się na siebie. Wynik nałożenia (lub inaczej – interferencji) można obserwować na ekranie monitora w oknie Interference-Beats programu głównego (P33_BEAT.SWS), które jest odpowiednikiem ekranu oscyloskopu.

TEORIA

Gdy dwie fale akustyczne, różniące się nieco częstotliwościami, nakładają się na siebie w jakimś miejscu, wtedy w miejscu tym powstaje wypadkowe drganie cząsteczek ośrodka o jednej częstotliwości, lecz o zmiennej, w miarę upływu czasu, amplitudzie. Periodycznie zmieniające się wówczas natężenie dźwięku nazywamy *dudnieniem*. Częstotliwość powstającej fali wypadkowej jest średnią arytmetyczną częstotliwości nakładających się fal, a częstotliwość zmiany amplitudy, czyli częstotliwość dudnienia f_d , jest równa różnicy częstotliwości f_1 i f_2 fal składowych.

$$f_d = \left| f_1 - f_2 \right|$$

Udowodnimy powyższe stwierdzenia na przykładzie interferencji fal harmonicznych.

Drgania harmoniczne

Ważny rodzaj ruchów stanowią ruchy cykliczne, w szczególności periodyczne drgania zwane *drganiami harmonicznymi*. Matematycznie oznacza to ruch opisany za pomocą równania:

$$x = x_0 \sin\left(2\pi f \cdot t + \alpha\right)$$

gdzie x_0 jest amplitudą drgań, f – częstotliwością, α – stałą zwaną fazą, charakteryzującą położenie cząsteczki w chwili t = 0.

Częstotliwość jest równa liczbie pełnych drgań cząsteczki ośrodka w jednostce czasu. Wiąże się ona z okresem drgań T (okres to czas jednego pełnego drgania) zależnością

$$f = 1/T$$
.

Jednostką częstotliwości jest $1 \text{ s}^{-1} = 1 \text{ Hz}$, (1 *herc*).

Dwa różne drgania mogą się dodawać, czyli podlegać superpozycji. Superpozycji ulegają drgania różniące się częstotliwością, amplitudą, fazą, a nawet można składać drgania wzajemnie prostopadłe. Rozpatrzymy tutaj nakładanie się dwóch drgań o takiej samej amplitudzie i niewiele różniących się częstotliwościach f_1 i f_2 , $(f_1 > f_2)$. Średnia arytmetyczna tych częstotliwości jest równa

$$f = (f_1 + f_2)/2$$
.

Jeśli wprowadzimy oznaczenie: $2\Delta f = f_1 - f_2$, to możemy zapisać częstotliwości składowe:

$$f_1 = f + \Delta f$$
 oraz $f_2 = f - \Delta f$.

Wychylenia poszczególnych drgań opisywane są wówczas następującymi wzorami:

 $x_1 = x_0 \cos 2\pi f_1 t = x_0 \cos 2\pi (f + \Delta f)t, \quad x_2 = x_0 \cos 2\pi f_2 t = x_0 \cos 2\pi (f - \Delta f)t.$

Wychylenie drgania wypadkowego jest sumą wychyleń drgań składowych,

$$x = x_1 + x_2 = x_0 \cos 2\pi (f + \Delta f) t + x_0 \cos 2\pi (f - \Delta f) t.$$

Po zastosowaniu wzorów na funkcje trygonometryczne sumy i różnicy kątów otrzymamy wyrażenie

$$x = 2x_0 \cos[2\pi \Delta f t] \cos[2\pi f t],$$

w którym funkcja

$$A = 2x_0 \cos[2\pi \Delta f t]$$

opisuje amplitudę wychylenia wypadkowego. Częstotliwość występowania maksymalnej wartości amplitudy $(\pm 2x_0)$ jest częstotliwością dudnień. Częstotliwość ta jest dwukrotnie większa niż Δf ponieważ maksimum dudnienia powstaje zarówno dla $\cos[2\pi \Delta f t] = 1$, jak i dla $\cos[2\pi \Delta f t] = -1$. Częstotliwość dudnień wynosi, więc,

$$f_d = 2\Delta f = f_1 - f_2,$$

co jest zgodne ze stwierdzeniem podanym na początku.

Rysunek obok przedstawia graficznie zjawisko dudnienia

Wykonanie ćwiczenia

Do wytwarzania dwóch fal dźwiękowych o nieco różnych częstotliwościach służy dwukanałowy generator. Amplituda fali wypadkowej w postaci impulsu elektrycznego rejestrowana jest przez czujnik napięcia, który przekazuje mierzone wartości do interfejsu połączonego z komputerem. Przebieg tej amplitudy w czasie pokazywany jest w oknie oscyloskopu programu *Science Workshop*. W programie tym mamy także możliwość pomiaru częstotliwości nakładających się fal. Służy do tego okno Frequency spectrum (FFT), rejestrujące rozkład widmowy badanych częstotliwości.

CZĘŚĆ I: Przygotowanie komputera

- 1. Włącz zasilanie stołu (patrz deska rozdzielcza stołu przy Twojej lewej nodze gdy siedzisz na wprost komputera) przekręć czerwoną "gałkę" w kierunku strzałek (powinna wyskoczyć), przekręć kluczyk jak w samochodzie i puść. Automatycznie włączy się interfejs i komputer.
- 2. Automatycznie uruchomi się system operacyjny *Windows* i program *Science Workshop*. Otwórz (File, Open) w katalogu *Library\Physics* dokument P33_BEAT.SWE.
- Na ekranie pojawi się okno podstawowe P33_BEAT.SWE oraz okna pomocnicze: Interferencebeats, Frequency Spectrum i Experiment Notes.
- Okienko Experiment Notes zawiera instrukcję wykonania ćwiczenia i jest miejscem do notowania wyników pomiarów. Przy wykonywaniu pomiarów należy to okno zamknąć.
- Okno P33_BEAT zawiera przyciski sterowania. Jeden z nich, <u>Sampling Options</u>, służy do ustawienia sposobu przeprowadzenia pomiaru. Jest tu jeszcze notatnik i kalkulator do podręcznych obliczeń. Na obrazie intefejsu powinno być podświetlone wejście analogowe A (jeśli nie jest, należy wskazać myszą ikonę wtyczki analogowej, przeciągnąć ją i "upuścić" na tym wejściu).
- Okno Interference Beats, to ekran oscyloskopu wraz ze sterowaniem. To tutaj będziemy obserwowali wynik superpozycji. Z prawej strony ekranu powinno być zaznaczone, że używane jest wejście analogowe A, a na skali pionowej na podziałkę przypada 0,2 V (można to zmienić przyciskami obok). Zwróć uwagę także na skalę podstawy czasu 10,00 ms/div.
- Okno Frequency Spectrum pokazuje widmo częstotliwości i umożliwia pomiar częstotliwości.

Okna programu do ćwiczenia 133

Okno podstawowe — zawiera przyciski sterowania

CZĘŚĆ II: Przygotowanie układu pomiarowego

1. Podłącz generator akustyczny do sieci. Ustaw wzmacniacz sumujący (SUMMING AMPLIFIER) znajdujący się po prawej stronie generatora tak, aby wyjścia z obu generatorów były połączone z potencjometrem głośności (VOLUME). W tym celu włączamy dwa przełączniki środkowe, a wyłączamy skrajne.

- 2. Końcówki przewodów od czujnika napięcia należy podłączyć do gniazd wyjściowych generatora oznaczonych napisem 8 Ω OUT oraz GND.
- 3. Równolegle do czujnika podłącz głośnik (końcówki głośnika włóż do gniazd wtyczek czujnika).
- 4. Wyłącz regulację modulacji na każdym z generatorów, (przełączniki MODULATION ustaw na OFF).
- 5. Wybierz na generatorze Nr 1 falę sinusoidalną, mnożnik częstotliwości na 100 oraz wartość amplitudy w połowie zakresu. Ustaw częstotliwość ok. 250 Hz.
- 6. Ustaw generator Nr 2 tak, jak generator Nr 1 i częstotliwość ok. 230 Hz.
- 7. Włącz generator i dobierz odpowiednią głośność za pomocą pokrętła VOLUME.

CZĘŚĆ III. Wykonanie pomiarów

- W celu uzyskania danych pomiarowych naciśnij przycisk TRIG (w oknie oscyloskopu) oraz MON (w oknie podstawowym). W oknie Interference - Beats powinien pokazać się przebieg falowy.
- 2. W celu zatrzymania pomiaru naciśnij przycisk STOP.
- 3. Naciskając w oknie oscyloskopu na przycisk z zaznaczonymi na nim osiami współrzędnych

(Smart Cursor) wywołujemy kursor precyzyjny, który pozwoli na określenie położenia punktów na ekranie. W celu znalezienia częstotliwości dudnienia wskazujemy najpierw na początek pierwszego pełnego cyklu zmiany amplitudy i zapisujemy odpowiadający temu punktowi czas pokazany tuż pod ramką. Następnie szukamy podobnie ulokowanego punktu końcowego ostatniego pełnego cyklu i też zapisujemy odpowiadający mu czas (patrz rysunek na str. 2).

- 4. Odczytujemy liczbę pełnych cykli zawartych pomiędzy tymi punktami i zapisujemy ją.
- W dalszej części pomiarów mierzymy częstości fal składowych. Pomiary kursorem precyzyjnym wykonujemy teraz w oknie Frequency Spectrum.
- 5. Naciśnij przycisk kursora precyzyjnego i ustaw wskaźnik na maksimum pierwszej częstotliwości składowej i odczytaj na osi poziomej jej wartość. Zanotuj pokazaną częstotliwość.
- 6. Przesuń kursor precyzyjny na maksimum drugiej częstotliwości składowej. Odczytaj jej wartość.

Opracowanie wyników pomiarów

1. Oblicz częstotliwość dudnienia,

$$f_d = \frac{N}{t_2 - t_1},$$

gdzie N oznacza liczbę pełnych cykli zmiany amplitudy pomiędzy chwilami t_1 i t_2 .

- 2. Oblicz różnicę obu częstotliwości składowych mierzonych bezpośrednio i porównaj wynik z częstotliwością dudnienia.
- 3. Oblicz procentową różnicę pomiędzy wartością teoretyczną i doświadczalną,

$$B_p = \frac{\left|f_t - f_d\right|}{f_t} \cdot 100\% \; .$$

4. Jakie czynniki mogły wpłynąć na różnicę pomiędzy wynikiem teoretycznym a doświadczalnym?