Nazwisko	Data	Nr na liście
Imię		Wydział
		Dzień tyg.
		Godzina.

Ćwiczenie 145: Obwody RLC

Tabela : Napięcie źródłowe U_Z i napięcie na oporniku U_R w zależności od częstotliwości prądu *f*.

C =	μF,	L=	= H
f [Hz]	U_Z	[V]	U_R [V]
50			
60			
70			
80			
90			
100			
110			
120			
130			
140			
150			
160			
170			
180			
190			
200			

Pomiary uzupełniające.					
<i>f</i> [Hz]	U_{Z} [V]	U_R [V]			

Wyznaczona częstotliwość rezonansowa f_{rez} , [Hz]	
Wyznaczona kołowa częstość rezonansowa ω_{rez} , [s ⁻¹]	
Teoretyczna kołowa częstość rezonansowa ω_{rez}^{t} , [s ⁻¹]	
Różnica procentowa: $B_p = \frac{\left \omega_{rez} - \omega_{rez}^t\right }{\omega_{rez}} \cdot 100\%$	

Ćwiczenie 145: Obwody RLC

CEL

Celem ćwiczenia jest zbadanie rezonansu w szeregowym obwodzie typu RLC (R — oporność, L — indukcyjność, C — pojemność). Sprawdzone zostanie zachowanie się obwodu w zależności od częstotliwości przyłożonego napięcia.

TEORIA

Jeżeli kondensator o pojemności C, naładowany ładunkiem q, połączymy z cewką o indukcyjności L, to zacznie się on rozładowywać. W obwodzie

popłynie prąd o natężeniu *I* i po pewnym czasie, napięcie na kondensatorze spadnie do zera. Ale podczas przepływu przez cewkę prądu o zmieniającym się natężeniu, powstaje w obwodzie siła elektromotoryczna samoindukcji opóźniająca zanikanie prądu, który płynie dalej i spada do zera dopiero, gdy kondensator naładuje się do napięcia przeciwnego znaku. Wówczas prąd zaczyna płynąć ponownie ale w kierunku przeciwnym do pierwotnego. Obwód osiąga stan wyjściowy i cały proces, zwany drganiami elektrycznymi, powtarza się cyklicznie. Natężenie prądu płynącego w obwodzie zmienia się zgodnie z zależnością:

$$I = I_0 \sin(\omega t + \varphi)$$

gdzie I_0 — amplituda natężenia, ω — częstość kołowa zmian prądu. Częstość kołowa związana jest z okresem drgań *T* i częstotliwością *f* zależnością: $\omega = 2\pi f = \frac{2\pi}{T}$.

Dla obwodu LC (pomijamy opór omowy) częstość kołowa dana jest wzorem

$$w = \frac{1}{\sqrt{LC}} \, .$$

Jeśli oporność obwodu jest znikomo mała, to drgania prądu są niegasnące. W rzeczywistości, cewka i przewody mają pewien opór. Podczas przepływu prądu, na oporze wydziela się ciepło i całkowita energia układu maleje. Zmniejsza się również amplituda drgań prądu i po pewnym czasie drgania zanikną. Drgania można podtrzymać wprowadzając do obwodu źródło zmiennej siły elektromotorycznej.

W obwodzie, w którym znajdują się: opór omowy R, cewka o indukcyjności L, kondensator o pojemności C oraz źródło sinusoidalnie zmiennej siły elektromotorycznej o częstotliwości kołowej ω ,

$$\mathcal{E} = \mathcal{E}_0 \cos \omega t$$

płynie prąd o natężeniu $I = I_0 \cos(\omega t - \varphi)$.

Po rozwiązaniu równania różniczkowego, które uzyskujemy po zastosowaniu praw Kirchhoffa dla powyższego obwodu, otrzymamy wzory na amplitudę prądu I_0 , fazę φ (kąt określający przesunięcie w czasie maksymalnej wartości napięcia i natężenia) i impedancję obwodu Z (opór wypadkowy obwodu):

$$I_0 = \frac{\mathcal{E}_0}{\sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}}, \quad \mathrm{tg}\varphi = \frac{L\omega - \frac{1}{C\omega}}{R}, \quad Z = \sqrt{R^2 + \left(L\omega - \frac{1}{C\omega}\right)^2}.$$

We wzorze na impedancję Z obwodu prądu zmiennego wyrażenie $L\omega$ oznacza opór indukcyjny cewki, $\frac{1}{C\omega}$ – opór pojemnościowy kondensatora.

Częstotliwość zmian napięcia źródłowego, przy której $L\omega = \frac{1}{C\omega}$ nazywana jest *kołową* częstotliwością rezonansową ω_{rez} ponieważ impedancja jest wówczas najmniejsza i amplituda natężenia prądu ma wartość maksymalną: $\omega_{rez} = \frac{1}{\sqrt{LC}}$. Częstotliwość drgań prądu wynosi

wówczas
$$f_{rez} = \frac{1}{2\pi \sqrt{LC}}$$

WYKONANIE ĆWICZENIA

РС	DTRZEBNE WYPOSAŻENIE	•	Opornik 100 Ω
•	Interfejs "Science Workshop 700"	•	Cewka o indukcyjności L = 2,9 H
•	Wzmacniacz mocy	•	Kondensator 0,96 $\mu F,$ 0,82 μF lub 1,04 μF
			Wybraną pojemność C zapisz w tabeli.
•	Czujnik napięcia	•	Przewody połączeniowe

Przygotowanie Komputera – nie zapisuj zmian w plikach (DON'T SAVE)

- 1. Włącz zasilanie stołu (patrz deska rozdzielcza stołu przy Twojej lewej nodze gdy siedzisz na wprost komputera) przekręć czerwoną "gałkę" w kierunku strzałek (powinna wyskoczyć), przekręć kluczyk jak w samochodzie i puść. Automatycznie włączy się interfejs i komputer.
- 2. Automatycznie uruchomi się system operacyjny Windows i program "Science Workshop". Otwórz (File ⇒ Open) w katalogu Library\Physics, dokument P45_IRCC.SWS. Na ekranie zobaczymy (po zamknięciu okna Experiment Notes) okno podstawowe P45_IRCC, okno oscyloskopu Scope przedstawiające przebiegi czasowe napięcia źródłowego i napięcia na oporniku, oraz okienko Signal Generator, na którym ustala się parametry sygnału na wyjściu wzmacniacza mocy.
- Generator sygnału jest ustawiony na napięcie sinusoidalnie zmienne o amplitudzie 3 V i częstotliwość 10 Hz. Wybrana jest opcja AUTO co oznacza, że pomiary rozpoczynają się automatycznie po naciśnięciu przycisku REC lub MON, a kończą się po naciśnięciu przycisku STOP lub PAUSE.

Układ pomiarowy

Rysunek przedstawia poglądowy schemat układu pomiarowego.

- 1. Sprawdź, czy wzmacniacz mocy połączony jest z kanałem **A** interfejsu.
- Sprawdź, czy czujnik napięcia (wtyk analogowy z dwoma przewodami) jest podłączony do kanału B interfejsu

- 3. Podłącz końcówki czujnika napięcia do opornika.
- 4. Połącz dwoma przewodami wyjście wzmacniacza mocy z wejściem napięciowym obwodu.

Okna ćwiczenia

Okno podstawowe "P45_LRCC" — zawiera przyciski sterowania

20.00 ms/div

 \sim

2000 samp/s

TRIG

**

Okno oscyloskopu "Scope" przedstawia przebiegi czasowe napięcia źródłowego i napięcia na oporniku. W czerwonych polach zaznaczono przyciski skalowania sygnału.

Okno "Signal Generator" — umożliwia regulację napięcia generatora mocy.

 (\cdot)

0.500 🔨 V/d v 👡

1.000

V/div

0

₽

Ω

₽

Przebieg i rejestracja pomiarów

- 1. Włącz wzmacniacz mocy.
- 2. Naciśnij w aktywnym oknie P45_IRCC przycisk MON pod przyciskiem powinien pojawić się mały, migający niebieski prostokąt, co sygnalizuje rozpoczęcie pomiaru.
- Aby znaleźć częstotliwość rezonansową obwodu, należy zwiększać częstotliwość napięcia źródłowego, aż napięcie na oporniku osiągnie wartość maksymalną. Wzrost napięcia na oporniku oznacza wzrost natężenia prądu w obwodzie (I = U/R). Wzrost natężenia prądu wraz

ze wzrostem częstotliwości oznacza zbliżanie się do częstotliwości rezonansowej obwodu, a po jej przekroczeniu — natężenie prądu będzie się zmniejszać.

- W pierwszym kroku zmieniaj częstotliwości co 10 Hz i zapisuj odpowiednie wartości napięcia w tabeli. Zacznij od 50 Hz, uzupełnij pierwszą część tabeli.
- W drugim kroku wybierz przybliżoną częstotliwość rezonansową (maksymalna wartość U_R) i wpisz ją w szarym polu tabeli *pomiary uzupełniające*. Ustaw ją w generatorze a następnie zmieniaj częstotliwość co 5 Hz: wykonaj po dwa pomiary dla mniejszych (o 5 i 15 Hz) oraz większych (o 5 i 15 Hz) wartości częstotliwości. Zapisz wartości napięć w tabeli *pomiary uzupełniające*.
- W trzecim kroku (w celu bardziej dokładnego określenia częstotliwości rezonansowej) wybierz z kroku drugiego częstotliwość dla maksymalnej wartości U_R i wpisz ją w szarym polu. Ustaw w generatorze a następnie zmieniaj częstotliwość co 1 Hz. Wykonaj po cztery pomiary dla mniejszych oraz większych wartości częstotliwości rezonansowej.
- W celu zmiany częstotliwości sygnału ze wzmacniacza mocy, należy w oknie generatora sygnału naciskać strzałkę 1 (obok liczby pokazującej wartość częstotliwości). Wartość o jaką zmienia się częstotliwość zależy od tego jaki klawisz jednocześnie przytrzymujemy.

Klawisz	Shift	żaden	Ctrl	Alt	Ctrl + Alt
Zmiana częstotliwości	100 Hz	10 Hz	1 Hz	0,1 Hz	0,01 Hz

- Dla każdej częstotliwości należy zmierzyć napięcie źródłowe i napięcie na oporniku. Jeżeli wartości napięcia (przebiegi) są zbyt gęste lub wychodzą poza zakres wykorzystaj przyciski skalowania (patrz Okno oscyloskopu "**Scope**", str. 4).
- Aby zmierzyć napięcie źródła i napięcie na oporniku użyj kursora precyzyjnego znajdującego się u dołu oscyloskopu. Po naciśnięciu przycisku, kursor zmienia się w krzyż z nitek pajęczych, gdy przesuniemy go w obręb pola wykresu. Współrzędne x i y położenia kursora wyświetlane są obok osi poziomej i pionowej. Po ustawieniu krzyża na wierzchołku odpowiedniej sinusoidy, możemy odczytać wartość amplitudy napięcia.
- 3. Ustaw kursor precyzyjny na wierzchołku napięcia z kanału A. Zanotuj w tabeli wartość, która jest podawana obok przycisku menu wejściowego kanału A.
- Ustaw kursor precyzyjny na wierzchołku napięcia z kanału B. Zanotuj wartość, która jest podawana obok przycisku menu wejściowego kanału B. Wysokość sinusoidy można zmieniać przyciskami obok liczby opisującej wartość napięcia na podziałkę (V/div).
- 5. Zwiększ częstotliwość. Zmierz za pomocą kursora napięcie wejściowe i napięcie na oporniku, zapisz dane w tabeli.
- 6. Zmieniaj częstotliwość, aż do wartości 200 Hz. W miarę jak zwiększana jest częstotliwość konieczna jest zmiana czułości osi poziomej oscyloskopu (osi czasu) za pomocą przycisku , pod ekranem oscyloskopu.
- 7. Wybierz z tabeli danych częstotliwość, przy której napięcie na oporniku miało wartość maksymalną.
- 8. Uaktywnij okno generatora sygnału. Wpisz wartość częstotliwości ustalonej punkcie 7 i naciśnij przycisk ENTER.
- 9. Dopasuj dokładnie częstotliwość tak, aby napięcie wejściowe było zgodne w fazie z napięciem na oporniku (wykresy powinny się nakładać na siebie):
 - a) naciśnij przycisk STOP.
 - b) aby sprawdzić czy napięcie z kanału **A** jest zgodne w fazie z napięciem z kanału **B**, przełącz oscyloskop do pracy w systemie **X-Y** (bez podstawy czasu):

- Naciśnij przycisk menu osi poziomej (duży przycisk na dole oscyloskopu).
 Wybierz ⇒ Analog B.
- Naciśnij przycisk menu kanału B (środkowy z dużych przycisków z prawej strony). Wybierz ⇒ No input.
- c) Naciśnij w oknie P45_IRCC przycisk MON. Jeżeli napięcia przykładane do osi X i Y oscyloskopu są przesunięte w fazie, zobaczymy na ekranie oscyloskopu elipsę. W przypadku, gdy napięcia są zgodne w fazie (częstotliwość jest rezonansowa), na ekranie będzie linia prosta. Dopasuj częstotliwość (zmieniając ją co 0,1 Hz) do częstotliwości rezonansowej f_{rez} . Zapisz tę wartość.
- 10. Naciśnij przycisk STOP. Wyłącz wzmacniacz mocy.

ANALIZA DANYCH

- 1. Narysuj wykres zależności I(f) (wykorzystaj dane ze wszystkich tabel) i zaznacz wyznaczoną częstotliwość rezonansową f_{rez} .
- 2. Oblicz rezonansową częstość kołową: $\omega_{rez} = 2\pi f_{rez}$.
- 3. Oblicz teoretyczną wartość kołowej częstości rezonansowej ze wzoru:

 $\omega_{rez}^t = \frac{1}{\sqrt{LC}}.$

- 4. Oblicz procentową różnicę teoretycznej i doświadczalnej wartości częstości kołowej.
- 5. We wnioskach przeanalizuj, która częstość rezonansowa, zmierzona czy teoretyczna została przez Ciebie wyznaczona dokładniej?